Barnes, J. R., Goggin, P. L. \& Goodfellow, R. J. (1979). J. Chem. Res. (M), pp. 1610-1656.
Colamarino, P. \& Orioli, P. (1976). J. Chem. Soc. Dalton Trans. pp. 845-848.
Fadeev, Yu. V., Kukushkin, Yu. N. \& Khokhryakov, K. A. (1975). Russ. J. Inorg. Chem. 20, 1519-1521.

James, B. R. \& Morris, R. H. (1980). Can. J. Chem. 58, 399-408. Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

Mestroni, G., Alessio, E., Calligaris, M., Attia, W. M., Quadrifoglio, F., Cauci, S., Sava, G., Zorzet, S., Pacor, S., Monti-Bragadin, C., Tamaro, M. \& Dolzani, L. (1989). Prog. Clin. Biochem. 10, 71-87.
Pearson, R. G. (1990). Coord. Chem. Rev. 100, 403-425.
Sokol, V. I. \& Porai-Koshits, M. A. (1974). Koord. Khim. 1, 577-583.
Stout, G. \& Jensen, L. H. (1968). X-ray Structure Determination. London: Macmillan.

Acta Cryst. (1991). C47, 750-752

New Precursors in the Chemistry of IVB Transition Metal Alkoxides. III. Synthesis and Structure of $\mathrm{Zr}_{2} \mathrm{Co}_{2}\left(\mu_{3}-\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{2}\left(\mu_{2}-\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{\mathbf{4}}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{4}(\text { acetylacetone })_{2}$

By Raimund Schmid, Alain Mosset and Jean Galy
CEMES-LOE BP 4347, 31055 Toulouse CEDEX, France

(Received 22 June 1990; accepted 10 October 1990)

Abstract

Bis(acetylacetonato)-bis(μ_{3}-propanolato)1:2:4к $O ; 2: 3: 4 \kappa O^{\prime}$-tetrakis (μ_{2}-propanolato)-1:2к ;-1:4-к $O ; 2: 3 \kappa O ; 3: 4 \kappa O$-tetrakis(propanolato)- $2 \kappa^{2} O$,$4 \kappa^{2} O$-dicobaltdizirconium, $\quad \mathrm{Zr}_{2} \mathrm{Co}_{2}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{10^{-}}$ $\left(\mathrm{O}_{2} \mathrm{C}_{5} \mathrm{H}_{8}\right)_{2}, \quad M_{r}=1091 \cdot 43$, monoclinic, $P 2_{1} / n, \quad a=$ 12.753 (3),$\quad b=16.500$ (3), $\quad c=13.485$ (2) $\AA, \quad \beta=$ 99.27 (2) ${ }^{\circ}, V=2800.6 \AA^{3}, Z=2, D_{x}=1.29 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71069 \AA, \quad \mu=4.88 \mathrm{~mm}^{-1}, \quad F(000)=$ 1124, room temperature, $R=0.057$ for 2798 independent $[I>3 \sigma(I)]$ reflections. The centrosymmetric molecule is tetranuclear. The Zr atom has a very distorted octahedral environment and the Co atom a distorted trigonal bipyramidal surrounding. The alkoxy groups show three different coordination schemes.

Introduction. The hydrolysis of bimetallic alkoxides allows the synthesis of very homogeneous mixed metal oxides via the sol-gel process (Dislich, 1988). However, these starting products are frequently extremely unstable. Recent studies (Schmid, Mosset \& Galy, 1990) from this laboratory show that they can be stabilized by a chelating ligand such as acetylacetone (Hacac).

The reaction of zirconium n-propanolate on cobalt(II) acetylacetonate yields a new hexanuclear precursor: $\quad \mathrm{Zr}_{2} \mathrm{Co}_{4}\left(\mu_{6}-\mathrm{O}\right)\left(\mu_{2}-\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{8}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{2^{-}}$ $(\mathrm{acac})_{4}$ (Schmid, Mosset \& Galy, 1991). We report now the X-ray structure of the second product in this reaction: $\mathrm{Zr}_{2} \mathrm{Co}_{2}\left(\mu_{3}-\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{2}\left(\mu_{2}-\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{4}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{4}$ (acac) ${ }_{2}$.

Experimental. 0.0082 mol of cobalt(II) acetylacetonate is suspended in $100 \mathrm{ml} n$-propanol, dried on
sodium and distilled under dry nitrogen. After the addition of 0.0328 mol of zirconium n-propanolate, the solution is stirred and refluxed for 24 h under nitrogen. This solution is then concentrated until one third of the solvent is removed and rapidly cooled in the refrigerator. Violet single crystals grow slowly; $0.25 \times 0.35 \times 0.15 \mathrm{~mm}$; Enraf-Nonius CAD-4 diffractometer; graphite-monochromatized Mo $K \alpha$ radiation; 25 reflections ($8<\theta<15^{\circ}$) for refined unit-cell parameters; $\theta / 2 \theta$ scan mode; scan width $1 \cdot 2^{\circ}$; independent reflections with $3<\theta<19^{\circ}$; range of $h k l$: $0<h<11,0<k<15,-12<l<12$; no intensity deterioration of the three standard reflections; Lp corrections, no absorption correction; 2798 independent reflections with $I>3 \sigma(I)$; metal positions from Patterson function, other non-H atoms from difference-Fourier syntheses; anisotropic fullmatrix least-squares refinement on $F ; 262$ refined parameters; unit weights; $R=0.057 ; w R=0.055$; $(\Delta / \sigma)_{\max }=0.1$; final $\Delta \rho$ values $<0.6 \mathrm{e} \AA^{-3}$. Calculations performed with SHELX76 (Sheldrick, 1976); scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 99-101, 149150).

Discussion. Final atomic coordinates for the non-H atoms are listed in Table 1* and selected bond distances and angles in Table 2.

[^0]Table 1. Fractional atomic coordinates and equivalent isotropic parameters for the non- H atoms, with e.s.d.'s in parentheses

	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
Zr	0.00595 (7)	$0 \cdot 10799$ (6)	0.02751 (6)	0.088 (1)
Co	0.17656 (9)	0.01506 (9)	-0.10386 (9)	0.095 (2)
$\mathrm{O}(2)$	0.1644 (4)	0.0978 (4)	-0.0052 (4)	$0 \cdot 100$ (8)
$\mathrm{O}(3)$	-0.1544 (4)	0.0915 (4)	0.0512 (4)	0.094 (7)
$\mathrm{O}(1)$	-0.0140 (4)	0.0155 (4)	-0.0946 (4)	0.087 (7)
$\mathrm{O}(4)$	0.0568 (5)	0.1609 (5)	0.1522 (5)	0.12 (1)
$\mathrm{O}(5)$	-0.0346 (5)	$0 \cdot 1978$ (4)	-0.0619 (5)	0.116 (9)
$\mathrm{O}(6)$	0.3348 (5)	0.0159 (5)	-0.1020 (5)	$0 \cdot 12$ (1)
$\mathrm{O}(7)$	$0 \cdot 1503$ (5)	0.0275 (5)	-0.2476 (5)	$0 \cdot 114$ (9)
C(1)	0.2582 (9)	0.1432 (9)	0.040 (1)	0.13 (2)
C(2)	0.331 (3)	0.255 (2)	0.011 (3)	0.35 (8)
C(3)	0.262 (2)	0.213 (1)	-0.032 (3)	0.21 (5)
C(4)	-0.2417 (8)	0.1495 (7)	0.0323 (9)	$0 \cdot 12$ (1)
C(5)	-0.249 (1)	0.1892 (9)	0.141 (1)	$0 \cdot 16$ (3)
C(6)	-0.336 (2)	0.238 (1)	0.134 (2)	0.25 (4)
C(7)	-0.0684 (7)	0.0344 (7)	-0.1966 (6)	$0 \cdot 10$ (1)
C(8)	-0.1861 (7)	0.0359 (7)	-0.1977 (7)	0.12 (1)
C(9)	-0.2429 (9)	0.0533 (8)	-0.3100 (8)	$0 \cdot 14$ (2)
C(10)	$0 \cdot 102$ (2)	0.211 (2)	0.231 (2)	0.23 (5)
C(11)	0.061 (3)	0.242 (2)	$0 \cdot 296$ (2)	0.26 (7)
C(12)	0.022 (2)	0.175 (2)	0.342 (2)	0.29 (6)
C(13)	-0.061 (1)	0.257 (1)	-0.140 (1)	$0 \cdot 17$ (2)
C(14)	-0.062 (2)	0.335 (2)	-0.107 (2)	0.25 (5)
C(15)	-0.020 (2)	0.371 (2)	-0.034 (2)	0.27 (5)
C(16)	$0 \cdot 380$ (1)	0.0192 (8)	-0.182 (1)	0.13 (2)
C(17)	0.5019 (8)	0.015 (1)	-0.155 (1)	$0 \cdot 16$ (3)
C(18)	$0 \cdot 325$ (1)	0.0243 (9)	-0.278 (1)	0.14 (2)
C(19)	0.219 (1)	0.0279 (8)	-0.3075 (9)	0.13 (2)
C(20)	$0 \cdot 174$ (1)	0.0296 (9)	$-0.4178(8)$	$0 \cdot 16$ (2)

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $\left(U_{1}^{2} U_{2}^{2} U_{3}^{2}\right)^{1 / 3}$, where U_{1}, U_{2} and U_{3} are root-mean-square amplitudes of the vibrational tensor.

Table 2. Selected bond distances (\AA) and angles (${ }^{\circ}$)

$\mathrm{Zr}-\mathrm{O}(4)$	1.913 (7)	$\mathrm{Zr}-\mathrm{Co}$	3•372 (3)
$\mathrm{Zr}-\mathrm{O}(5)$	1.928 (7)	$\mathrm{Zr}-\mathrm{Co}$	3.386 (3)
$\mathrm{Zr}-\mathrm{O}(3)$	$2 \cdot 138$ (5)	$\mathrm{Zr}-\mathrm{Zr}$	3.638 (2)
$\mathrm{Zr}-\mathrm{O}(2)$	2.144 (5)	$\mathrm{O}(2)-\mathrm{C}(1)$	1.460 (9)
$\mathrm{Zr}-\mathrm{O}(1)$	$2 \cdot 225$ (6)	$\mathrm{O}(3)-\mathrm{C}(4)$	1.458 (8)
$\mathrm{Zr}-\mathrm{O}(1)$	2.229 (5)	$\mathrm{O}(1)-\mathrm{C}(7)$	1.472 (8)
$\mathrm{Co}-\mathrm{O}(7)$	1.924 (6)	$\mathrm{O}(4)-\mathrm{C}(10)$	1.397 (7)
$\mathrm{Co}-\mathrm{O}(2)$	1.930 (6)	$\mathrm{O}(5)-\mathrm{C}(13)$	1.438 (9)
$\mathrm{Co}-\mathrm{O}(3)$	1.935 (5)	$\mathrm{O}(6)-\mathrm{C}(16)$	1.306 (9)
$\mathrm{Co}-\mathrm{O}(6)$	2.014 (6)	$\mathrm{O}(7)-\mathrm{C}(19)$	1.282 (8)
$\mathrm{Co}-\mathrm{O}(1)$	$2 \cdot 454$ (5)		
$\mathrm{O}(4)-\mathrm{Zr}-\mathrm{O}(5)$	102.5 (2)	$\mathrm{O}(2)-\mathrm{Co}-\mathrm{O}(1)$	76.8 (2)
$\mathrm{O}(4)-\mathrm{Zr}-\mathrm{O}(3)$	$97 \cdot 1$ (2)	$\mathrm{O}(3)-\mathrm{Co}-\mathrm{O}(6)$	101.9 (3)
$\mathrm{O}(4)-\mathrm{Zr}-\mathrm{O}(2)$	$91 \cdot 1$ (2)	$\mathrm{O}(3)-\mathrm{Co}-\mathrm{O}(1)$	$77 \cdot 3$ (3)
$\mathrm{O}(4)-\mathrm{Zr}-\mathrm{O}(1)$	94.3 (2)	$\mathrm{O}(6)-\mathrm{Co}-\mathrm{O}(1)$	$176 \cdot 3$ (2)
$\mathrm{O}(4)-\mathrm{Zr}-\mathrm{O}(1)$	160.7 (3)	$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{Co}$	$120 \cdot 1$ (5)
$\mathrm{O}(5)-\mathrm{Zr}-\mathrm{O}(3)$	91.4 (3)	$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{Zr}$	127.5 (6)
$\mathrm{O}(5)-\mathrm{Zr}-\mathrm{O}(2)$	95.6 (2)	$\mathrm{Co}-\mathrm{O}(2)-\mathrm{Zr}$	112.3 (2)
$\mathrm{O}(5)-\mathrm{Zr}-\mathrm{O}(1)$	$161 \cdot 5$ (3)	$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{Co}$	$120 \cdot 5$ (5)
$\mathrm{O}(5)-\mathrm{Zr}-\mathrm{O}(1)$	94.4 (3)	$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{Zr}$	127.8 (4)
$\mathrm{O}(3)-\mathrm{Zr}-\mathrm{O}(2)$	167.8 (2)	$\mathrm{Co}-\mathrm{O}(3)-\mathrm{Zr}$	111.7 (3)
$\mathrm{O}(3)-\mathrm{Zr}-\mathrm{O}(1)$	78.8 (3)	$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{Zr}$	123.9 (5)
$\mathrm{O}(3)-\mathrm{Zr}-\mathrm{O}(1)$	91.4 (2)	$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{Zr}$	121.8 (4)
$\mathrm{O}(2)-\mathrm{Zr}-\mathrm{O}(1)$	91.6 (3)	$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{Co}$	105.9 (6)
$\mathrm{O}(2)-\mathrm{Zr}-\mathrm{O}(1)$	$78 \cdot 1$ (2)	$\mathrm{Zr}-\mathrm{O}(1)-\mathrm{Zr}$	$109 \cdot 5$ (2)
$\mathrm{O}(1)-\mathrm{Zr}-\mathrm{O}(1)$	70.5 (3)	$\mathrm{Zr}-\mathrm{O}(1)-\mathrm{Co}$	$92 \cdot 1$ (3)
$\mathrm{O}(7)-\mathrm{Co}-\mathrm{O}(2)$	126.8 (3)	$\mathrm{Zr}-\mathrm{O}(1)-\mathrm{Co}$	$92 \cdot 5$ (3)
$\mathrm{O}(7)-\mathrm{Co}-\mathrm{O}(3)$	117.0 (3)	$\mathrm{C}(10)-\mathrm{O}(4)-\mathrm{Zr}$	168.3 (5)
$\mathrm{O}(7)-\mathrm{Co}-\mathrm{O}(6)$	$91 \cdot 3$ (2)	$\mathrm{C}(13)-\mathrm{O}(5)-\mathrm{Zr}$	171.6 (5)
$\mathrm{O}(7)-\mathrm{Co}-\mathrm{O}(1)$	92.2 (2)	$\mathrm{C}(16)-\mathrm{O}(6)-\mathrm{Co}$	124.3 (6)
$\mathrm{O}(2)-\mathrm{Co}-\mathrm{O}(3)$	$110 \cdot 9$ (3)	$\mathrm{C}(19)-\mathrm{O}(7)-\mathrm{Co}$	$127 \cdot 6$ (6)
$\mathrm{O}(2)-\mathrm{Co}-\mathrm{O}(6)$	100.2 (3)		

The structure consists of discrete tetranuclear molecules situated on a centre of symmetry (Fig. 1). The inorganic core of this molecule can be viewed as two planes $\mathrm{Zr}-\mathrm{O}(2)-\mathrm{Co}-\mathrm{O}(3)^{\prime}-\mathrm{Zr}^{\prime}-\mathrm{O}(1)$, folded
along $\mathrm{Co}-\mathrm{O}(1)$, connected through the $\mathrm{Zr}-\mathrm{Zr}^{\prime}$ axis.

Surrounding the zirconium is a very distorted octahedron involving six O atoms from six alkoxy groups. The main distortion comes from the coordination to the $\mu_{3} \mathrm{O}$ atoms with a narrow $\mathrm{O}(1)-\mathrm{Zr}-$ $\mathrm{O}(1)^{\prime}$ angle, $70.5(3)^{\circ}$, and a remarkably short $\mathrm{O}(1)$ O(1)' distance, $2 \cdot 569$ (9) \AA.

The cobalt environment is trigonal bipyramidal involving three O atoms from three alkoxy groups and the two O atoms of a chelating acetylacetonato group. The polyhedron is distorted, the $\mathrm{O}(2)$ and $\mathrm{O}(3)$ atoms being repelled in the direction opposite to the chelate ring. The $\mathrm{Co}-\mathrm{O}(1)$ bond is very weak: 2.454 (5) \AA compared to the mean value of the four other $\mathrm{Co}-\mathrm{O}$ distances ($1.95 \AA$).

The acetylacetonato group shows a slightly asymmetric dicoordination towards the Co atom. The ring is perfectly planar, the greatest deviation being 0.007 (6) \AA for $C(16) . C(17)$ lies in this plane but $C(20)$ is displaced by 0.075 (8) \AA.

The alkoxy groups show three different coordination schemes. Two groups are coordinated, through a $\mu_{3}-\mathrm{O}$, to a Co and two Zr atoms. Four groups are dicoordinated to a Co atom and a Zr atom and four groups are only monocoordinated towards the Zr atoms. The $\mathrm{Zr}-\mathrm{O}$ distances are significantly different according to the coordination mode. The mean values are: $1.92,2.14$ and $2.23 \AA$ respectively for a mono-, di- or tricoordinated group.

The O atoms of the monocoordinated groups, $\mathrm{O}(4)$ and $\mathrm{O}(5)$, are $s p$ hybridized. Indeed, the $\mathrm{Zr}-\mathrm{O}-\mathrm{C}$ angle is equal to $168 \cdot 3$ (5) and $171.6(5)^{\circ}$, respectively. This linear agreement can be explained by the ability of oxygen to act as a π donor towards

Fig. 1. ORTEP (Johnson, 1965) drawing of the tetranuclear molecule.
d^{0} metals (Hubert-Pfalzgraf, 1987). Such a geometry has already been observed in the hexanuclear complex synthesized through the same reaction $\left[\mathrm{Zr}-\mathrm{O}-\mathrm{C}=179.5(6)^{\circ}\right]$ (Schmid, Mosset \& Galy, 1991).

We wish to thank the Deutsche Forschungsgemeinschalt (Bonn) for financial support to RS.

References

Dislich, H. (1988) Sol-gel Technology, edited by L. C. Klein, pp. 50-79. Noyes Publication.
Hubert-Pfalzgraf, H. G. (1987). New J. Chem. 11, 663-673.
Schmid, R., Mosset, A. \& Galy, J. (1990). C. R. Acad. Sci. Sér. II, 311, 1167-1170.
Schmid, R., Mosset, A. \& Galy, J. (1991). Inorg. Chim. Acta, 179, 167-170.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Quasi-One-Dimensional Structure of cis-Dichlorobis(2,6-dimethylphenyl isocyanide)palladium(II), $\left[\mathbf{P d}\left\{2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right\}_{2} \mathrm{Cl}_{2}\right]$

By Marc Drouin, Daniel Perreault, Pierre D. Harvey* and André Michel* \dagger
Département de chimie, Université de Sherbrooke, Sherbrooke (Québec), Canada J1K 2R1

(Received 8 June 1990; accepted 6 November 1990)

Abstract

C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Pd}, M_{r}=439 \cdot 66\), triclinic, $P \overline{1}$, $a=8.2168$ (9), $b=10.4799$ (7), $c=10.8272$ (12) \AA, α $=85.966$ (7), $\beta=80.018$ (10), $\gamma=86.929$ (7) ${ }^{\circ}, \quad V=$ $915.14(16) \AA^{3}, \quad Z=2, \quad D_{x}=1.596 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu=$ $1.29 \mathrm{~mm}^{-1}, \quad \lambda($ Mo $K \alpha)=0.70930 \AA, \quad F(000)=$ $439 \cdot 95, T=293 \mathrm{~K}$. The structure was refined to $R=$ $0.034, w R=0.030$ for 2100 observed reflections. The Pd atom has a square-planar coordination with the two Cl atoms and the two isocyanide groups in cis configurations. The dihedral angles between the xylenyl isocyanide planes and the Pd coordination plane are $20.9(1)$ and $46.6(1)^{\circ}$. The compound forms a quasi linear chain with $\mathrm{Pd} \cdots \mathrm{Pd}$ separations of $4 \cdot 186$ (2) and 4.061 (2) \AA, and a $\mathrm{Pd} \cdots \mathrm{Pd} \cdots \mathrm{Pd}$ angle of $170 \cdot 17(2)^{\circ}$.

Introduction. $\left[\mathrm{Pd}\left\{2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}_{2} \mathrm{Cl}_{2}\right]\right.$ (1) can be obtained from direct reaction between xylenyl isocyanide and palladium(II) dichloride in aqueous solutions or from photochemical decomposition of hexakis(xylenyl isocyanide)dipalladium(I) hexafluorophosphate, dichlorotetrakis(xylenyl isocyanide)dipalladium(I) hexafluorophosphate or dichlorotetrakis(xylenyl isocyanide)dipalladium(I) in chloroform solutions (Yamamoto \& Yamazaki, 1985). (1) is of some interest in catalysis; the related cisdichlorobis(phenyl isocyanide)palladium(II) compound (2) is found to be an efficient catalyst in hydroformylation reactions (Mondal, Banerjee \&

[^1]Sen, 1980). The presence of methyl groups at the ortho positions in (1) should induce important intramolecular steric hindrance and should influence molecular structure, crystal packing and reactivity. In the course of our work, we have noticed that (1) crystallizes from acetonitrile or chloroform/ether solutions forming long needles from which suitable single crystals were available for X-ray diffraction analysis. After solving the X-ray single-crystal diffraction data, we find that contrary to most analogous non-planar compounds (cis- $\mathrm{PdCl}_{2} L_{2} ; L=$ bulky ligand), a quasi-one dimensional (1D) structure is found despite the distorted structure of (1). We are currently investigating the design of new 1D compounds using mono- and diisocyanide ligands with $\mathrm{Pd}^{\mathrm{II}}, \mathrm{Ag}^{\mathrm{I}}$ and Au^{I} metals. This work describes the crystal and molecular structures of (1).

Experimental. Enraf-Nonius CAD-4 diffractometer, graphite monochromator. Mo $K \alpha$ radiation: lattice parameters determined from 24 reflections ($40 \leq 2 \theta$ $\left.\leq 45^{\circ}\right) ; 2 \theta / \omega$ technique; three standard reflections monitored every 60 min without significant deviation. Crystal: $0.20 \times 0.20 \times 0.20 \mathrm{~mm} ;-8 \leq h \leq 8,0$ $\leq k \leq 10,-11 \leq l \leq 11 ; 2364$ unique measured reflections; $R_{\text {int }}=0.016,2100$ observed with $I_{\text {net }} \geq$ $2 \cdot 5 \sigma I_{\text {net }}, 2 \theta_{\max }=44.7^{\circ} ; R=0.034, w R=0.030, S=$ 3.00; $(\Delta / \sigma)_{\max }=0.004$; max. and min. density peaks $=0.790$ and $-0.480 \mathrm{e} \AA^{-3}$. The NRCVAX system (Gabe, Lee \& Le Page, 1985) was used for all calculations. The structure was solved by the application of direct methods and refined by full-matrix least squares on F using weights $\left[w=1 / \sigma^{2}(F)\right]$ based
© 1991 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53643 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * To whom correspondence should be addressed.
 \dagger Correspondence concerning the X-ray crystallographic data should be addressed to this author.

